材料量子力学 (MA2201L1)

担当教員:渡邉 聡 教授

対象:第2学年 単位数:2.0 単位数:2.0 | 単位数:2.0 | バイオ | 環境・基盤 | ナノ・機能 | 選択必修 | ステント | 大子・機能 | フェント | ステント | ステ

実施時期:教養学部A1ターム月曜日2時限

木曜日2時限

場所: 42号講義室

講義目的

マテリアルの機能(電気物性、光物性など)を理解するために必要不可欠な量子力学の基礎を学ぶ。量子力学的世界像が日常的感覚とどのように異なるかを理解し、マテリアル中での電子や原子の振舞いをイメージできるようになることをねらいとする。特に、対象とする問題に即してそこでの量子力学的特徴(古典力学との違い)を説明できること、自由電子モデルのシュレディンガー方程式を解くことができ、その結果の意味を説明できることを目標とする。

講義項目

1. マテリアル工学における量子力学の必要性

2. 量子性

3. 波動性と粒子性

4. シュレディンガー方程式

5. 波動関数の意味

6. 物理量の観測と不確定性原理

 7. 例題(1)自由電子モデル (井戸型ポテンシャル、トンネル効果)

8. 例題(2) フォノン

9. 水素原子

10. 多粒子系の特徴

理解すべき事項

エネルギーの量子化

粒子・波動の二重性

シュレディンガー方程式の意味

波動関数と粒子の存在確率との関係

不確定性原理、物理量の期待値、交換関係

井戸型ポテンシャル中の粒子の固有エネルギ

ーと固有関数

トンネル効果

調和振動子の固有エネルギーと固有関数

球面調和関数、角運動量、スピン

ボーズ粒子とフェルミ粒子

関連する講義

事前履修:なし 並行履修:なし

事後履修:材料統計力学、固体物性学、半導体物性学、応用ナノデバイス材料学

参考書(テキスト): Atkins' Physical Chemistry、基礎からの量子力学(上村洸・山本貴博、裳華房)、量子力学(小形正男、裳華房)、工学系のための量子力学(上羽弘、森北出版)など

参考書 (演習書):量子力学演習(小出昭一郎・水野幸夫、裳華房)など

講義ノートのリンク先:UTOL上にアップロードする。

成績評価:主に期末試験。毎回の小テストの成績も加味する。

備考