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 Problem 4  

Suppose that a car composed of a body, a wheel, and a suspension is running on a 

wavy road as shown in Figure 1. The velocity in the horizontal !-direction " is assumed 

constant. The body of the car is assumed to be a mass point with a mass # supported by 

the wheel and the suspension, the masses of which are negligible, and to vibrate only in 

the vertical $ -direction. The suspension has a spring constant %  and a damping 

coefficient &. The height of the car body from the road surface is ℎ( in a stationary state. 

The road has a sinusoidal surface, the height of which is ) sin(2/ !/1). Assume that the 

wheel never lose contact with the road surface, and that its size is negligible. 

 

First, consider the case of damping coefficient & being sufficiently small. 

1. By assuming that the damping coefficient & is negligible, give the equation of motion 

regarding the vertical position of the car body $(3) using #, %, ), ℎ(, 3, and 4 =

2/"/1, where 3 is elapsed time. 

2. Derive the formula of the specific frequency of the free vibration of the car body 

described by the equation obtained in Question 1. 

3. Derive the solution of the equation obtained in Question 1 using #, %, ), ℎ(, 3, and 

4, after enough time has passed from the start of running to attain steady state vibration. 

At that time, free vibration of the car body has disappeared by meager damping. Here, 

using arbitrary variable 6, you may express the vertical motion of the car body by the 

formula $(3) = 6 sin43 + ℎ(. 

4. Derive the formula of the speed at which the car is brought into a resonance state, and 

then calculate its concrete value with two significant digits. Here, the parameters have 

the following values. 

# = 200	kg, % = 4000	kg ∙ s–?, ) = 40	mm, 1 = 8.0	m, and " = 50	km ∙ h–E. 
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Next, consider the case where damping coefficient & cannot be ignored. 

5. Give the equation of motion regarding the vertical position of the car body $(3) using 

#, %, ), &, ℎ(, 3, and 4. 

6. Derive the solution of the equation obtained in Question 5 using #, %, ), &, ℎ(, 3, 

and 4, after enough time has passed from the start of running to reach steady state in 

vibration. Here, using arbitrary variables F, 6, GE , and G? , you may express the 

vertical motion by the formula $(3) = GE sin43 + G? cos43 + ℎ(, obtain GE and 

G?, and then derive the solution in the form of $(3) = 6 sin(43 − F) + ℎ(. 

7. Derive the formula expressing the ratio between the amplitude of the vertical vibration 

of the car body in the state of Question 6 and that of the road surface ), and then 

calculate its concrete value with two significant digits. Calculate the ratio of the 

amplitude of this vibration to that in the case considered in Question 3 with two 

significant digits. Here, the parameters have the following values. 

# = 200	kg , % = 4000	kg ∙ s–? , ) = 40	mm , 1 = 8.0	m , " = 50	km ∙ h–E , and 

& = 4.0	MN ∙ s ∙ m–E. 

 

 

Figure 1 
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 Problem 5  

Let us consider an alternating current propagating in the M direction in an infinitely 

long transmission line in the M direction composed of a dielectric (permittivity N = NON(, 

where NO  is relative permittivity and N(  is the permittivity of vacuum) sandwiched 

between two plane-parallel electrodes made of perfect conductor placed perpendicular to 

! axis separated by distance P as shown in Figure 1. Assume that the electrodes are 

sufficiently wide in the $ direction so that you can ignore the effects of the edges, and 

that the current propagating in the M direction does not depend on $. Electric field vector 

Q(R, 3) and magnetic flux density vector T(R, 3) are assumed to exist only between the 

electrodes and their M components are assumed to be 0. Here, R is the position vector 

and 3 is the time. Currents propagating on electrodes along M axis (through unit length 

in the $ direction) are UE(R, 3) = VWX( cos(%M − 43) on the electrode 1 placed at ! =

0 and U?(R, 3) = −VWX( cos(%M − 43) on the electrode 2 placed at ! = P. Here, VW is 

the unit vector in the M direction, % is the magnitude of the wave vector, and 4 is the 

angular frequency. In this case, electromagnetic fields obey the following Maxwell’s 

equations: 

 Y ∙ Q =
Z

N
 (1a) 

 Y ∙ T = 0 (1b) 

 Y × Q = −
\T

\3
 (1c) 

 Y × T = ](^ + N](
\Q

\3
	, (1d) 

where Z  is the charge density, ^  is the current density, and ](  is the magnetic 

permeability of vacuum. 

 

1. Derive the following equation (2) using Maxwell’s equations and the vector identity 

Y ∙ (Y × _) = 0 (_ is an arbitrary vector). 
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 Y ∙ ^ +
\Z

\3
= 0 (2) 

Show an integral form of Equation (2) and describe its physical meaning in about 30 

words. 

 

2. Calculate surface charge density on the electrode 1, È(M, 3), and that on the electrode 

2, ?̀(M, 3), using Equation (2). 

 

3. Calculate the electric field vector Q(R, 3) and magnetic flux density vector T(R, 3) 

in 0 < ! < P using Maxwell’s equations (1a) and (1d). 

 

4. Derive a relationship between % and 4 by applying Equation (1c) to Q(R, 3) and 

T(R, 3)  obtained in Question 3. Calculate the velocity of the alternating current 

propagating in the transmission line and compare with the light velocity in vacuum. 

Describe its physical meaning in about 30 words. 

 

 

 
 

Figure 1 
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 Problem 6  

1. Consider a particle of energy b( and mass # which can move only along the ! 

direction according to one-dimensional Schrödinger equation, given by the following 

equation (1).  

 c−
ℏ?

2#

P?

P!?
+ e(!)fg(!) = b(g(!) (1) 

Here, g(!) is the wave function of the particle, e(!) is a potential, and ℏ = ℎ/2/ 

(ℎ is Planck’s constant). 

As shown in Figure 1, the particle enters from the left toward the one-dimensional 

step-type potential represented by the following equation (2). 

 e(!) = h
0 (! ≤ 0)

e( (! > 0)
 (2) 

Here, e( > 0. 

 

 

Figure 1 

 

The wave function gk  of the particle in Region I (! ≤ 0) can be written as the 

following equation (3): 
 gk = 6 exp(o%!) + G exp(−o%!)	. (3) 

!"

Region II

#(%)
#"

Region I

% = 0
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Here, the first and second terms of the right hand side of Equation (3) represent the 

incidence and reflection of the particle, respectively, % = p
?qrs

ℏt
 and o  is the 

imaginary unit. Answer the following questions. 

(1) When the energy of the particle is  b( > e(, reflection and transmission of the 

particle occur at the potential barrier at ! = 0. When the wave function of the 

particle in Region II (! > 0) is expressed as gkk = uE exp(o%E!), express %E 

using #, ℏ, b(, and e(. 

(2) Express the reflectance v = |G|?/|6|?  and transmittance x = 1 − v  of the 

particle of Question 1(1) using b( and e(. 

(3) When a particle of b( < e( enters, the wave function of the particle in Region II 

(! > 0) is expressed as gkk = u? exp(−%?!). In this case, obtain the reflectance 

v. The derivation process must be shown. 

 

2. Next, the behavior of electrons emitted from a metal surface by applying a uniform 

electric field with intensity z	(z > 0) perpendicular to the metal surface is examined 

using a simple one-dimensional triangular potential approximation as shown in Figure 

2. This triangular potential is given as  

 e(!) = h
0 (! ≤ 0)

e( − {z! (! > 0)	.
 (4) 

Assume that ! ≤ 0 corresponds to the region of metal and ! > 0 corresponds to the 

region of vacuum. Here,	e( > 0 and { is the elementary charge. A particle of energy 

b( and mass # which can move only along the ! direction enters from the left.  
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Figure 2 

 

In the case of b( < e(, it is assumed that the transmittance x| at the position of ) 

(e()) = b() can be expressed as follows: 

 x| = exp }−2~ �
2#[e(!) − b(]

ℏ?

|

(

P!Ç	. (5) 

Answer the following questions. 

(1) Show that the transmittance x|  of the particle can be expressed using É	(=

e( − b(), #, ℏ, {, and z as follows: 

 x| = exp Ñ−
4√2#

3ℏ{z
Éá/?à	. (6) 

(2) When b( is the Fermi energy of the metal, É in Question 2(1) corresponds to 

the work function. Here, consider an experiment in which an electric field z is 

applied perpendicularly to a tungsten surface with a work function of 4.45	eV to 

extract electron. Using Equation (6), obtain the electric field z to achieve the 

transmittance x|  of 6.74 × 10åá , and obtain the corresponding value of ) . 

Answer with three significant digits. Here, the elementary charge { =

1.60 × 10åEç	C, ℏ = 1.05 × 10åáè	J∙s, and mass of the electron # = 9.11 ×

10åáE	kg. You may assume that ln(6.74 × 10åá) = −5.00. 

(3) The phenomenon that particles pass through a potential barrier as described in 

Question 2(2) is called tunnel effect. Give one example of apparatus or device that 

utilizes the tunnel effect, and explain its operation principle in about 30 words. 

!(#)

#

!%

# = 0 (

)%
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 Problem 7  

Consider a process where heterogeneous nucleation of α phase occurs on the grain 

boundary between two crystal grains (grain 1 and grain 2) of the mother phase β, at a 

certain temperature x (Figure 1). The nucleus of α phase has lenticular-shaped body, 

which is approximated by the combination of two bodies given by a part of a sphere with 

a radius ï, as shown in Figure 2. Let the supplementary angle of the angle between the 

surface of the lenticular solid and the grain boundary be ñ	(0 < ñ ≤ 90°). Let the free 

energy difference between α phase and β phase per unit volume at the temperature x 

be Δôö(x)	õ= ôú(x) − ôù(x)û. Answer the following questions. 

 

 

 

 

 

 

 

 

1. Let the interface energy (per unit area) between α phase and β phase be `úù, and 

the grain boundary energy (per unit area) between β phase grains be ù̀ù. Formulate 

the relationship among `úù, ù̀ù, and ñ in Figure 1. Here assume the anisotropy of 

`úù and ù̀ù is negligible. 

 

2. Prove that the total free energy change ∆b is given by Equation (1) when α phase 

nucleates as described in Figure 1. For simplicity, denote the surface area and the 

volume of the α phase in Figure 1 as † and e, respectively. Assume the strain energy 

due to the nucleation of α phase is negligible. 

Center of sphere

rθ

Half cut of the
lenticular solid
(radius of curvature r)

Figure 2Figure 1

α phase

β phase (grain1)

β phase (grain 2)
Grain boundary of β phase

θ

Lenticular solid
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 ∆b = eΔôö(x) + †σúù − /ï
?σùùsin

?ñ (1) 

 

3. The nucleus of α phase stably grows when the radius of curvature ï is larger than a 

certain value ï∗ (the radius of curvature for the critical nucleus). Explain the reason 

in about 40 words based on Equation (1). Here † and e are given by the following 

Equations (2) and (3), respectively. 

 † = 4/ï?(1 − cos ñ) (2) 
 e = 2/ïá(2 + cosñ) (1 − cos ñ)? 3⁄  (3) 

 

4. Show that the radius of curvature for the critical nucleus of α phase ï∗ does not 

depend on the value of ñ. 

 

5. Give the formation energy of the critical nucleus of α phase using Δôö(x), `úù, and 

ñ. 

 

6. The nucleation rate of α phase is given by the product of two factors: “number density 

of critical nuclei” and “frequency of atomic attachment on a critical nucleus”. 

Considering the temperature dependences of these two factors, show schematically the 

graph of the heterogeneous nucleation rate of α phase as a function of temperature, 

for the temperature range from the β → α  transformation temperature x(  to the 

temperature sufficiently lower than x(. x( should be indicated in the figure clearly. 
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 Problem 8  
1. Consider the binary alloy system of copper (Cu) and iron (Fe). The phase diagram is 

schematically shown in Figure 1. At 1273	K, the solubility of Fe in Cu is 2.5	at%, 

and the solubility of Cu in Fe (γ phase) is 3.5	at%. Answer the questions below. 

Show your derivation process in each problem. Note that the gas constant v =

8.314	J · molåE · KåE. Answer with three significant digits. 

 

 
Figure 1  

 

(1) For a dilute solution in a binary system, the vapor pressure ´E  of the solute 

component 1 is proportional to its mole fraction !E. Thus, ´E = %!E where % is 

a constant. In the dilute solution, the vapor pressure ´? of the solvent component 

2 is proportional to the mole fraction of the solvent !?. Thus, ´? = !?´?
¨ where 

´?
¨  is the vapor pressure for pure component 2. Based on the approximations 

regarding the vapor pressures of the solute component 1 and solvent component 

2, schematically draw the activity of Fe in the Cu-Fe binary alloy at 1273	K 

against the mole fraction of Fe. 

(2) Obtain the activity of Fe in the Cu-Fe binary alloy with 1	at% Fe at 1273	K.  
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(3) Calculate the minimum value of the oxygen partial pressure at which 1	at% of 

Fe dissolved in the Cu-Fe binary alloy is oxidized to FeO at 1273	K. Use the 

standard free energy change ∆ô¨  at temperature x  for the reaction below. 

Formations of oxides of iron and copper other than FeO are negligible. 

 Fe	(solid) +
1

2
O?	(gas) = FeO	(solid) 

 ∆ôo = −264889 + 58.79	x J ∙ molåE 

 

2. A gasoline engine mainly consists of a piston and a cylinder to move the piston by 

repeating compression, combustion, expansion, etc. of the gas in the cylinder. The 

following simplified thermodynamic cycle (Otto cycle) as shown in Figure 2 is 

generally regarded as a model of a gasoline engine. Consider an ideal thermodynamic 

cycle using an ideal gas as the working substance introduced into and exhausted from 

the cylinder. The following quasi-static processes are executed in the system.  

 

Figure 2 

 

(i) Process e�a: the working substance is introduced into the cylinder up to the 

volume eE at the constant pressure ∞E and the constant temperature x±. 

(ii) Process a�b: adiabatic compression to the temperature x≤, the volume e?, 

and the pressure ∞?. 
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(iii) Process b�c: heat is transferred to the working substance at a constant 

volume in a short time, and then temperature and pressure increase up to x≥ 

and ∞á, respectively. 

(iv) Process c�d: adiabatic expansion to the volume eE . Temperature and 

pressure decrease to x¥ and ∞è, respectively. 

(v) Process d�a: heat is ejected from the working substance at a constant volume. 

Temperature and pressure decrease to x± and ∞E, respectively.  

(vi) Process a�e: the mass of the working substance is exhausted from the 

cylinder to the outside at constant temperature and pressure. 

 

Answer the following questions. Show your derivation process.  

(1) Show that the following equation (1) applies for an ideal gas of µ moles: 

 u∂ = u∑ + µv. (1) 
Here, u∂  is the heat capacity at constant pressure, u∑  is the heat capacity at 

constant volume, and v is the gas constant. 

(2) Derive the following equation (2), in the case of a quasi-static adiabatic process 

for an ideal gas: 
 ∞e∏ = constant. (2) 

Here, ∞ and e are pressure and volume, respectively, and γ = u∂ u∑⁄ . You can 

use Equation (1). 

(3) Express the heat πE supplied to the working substance in process b c of the 

above thermodynamic cycle using x≤ , x≥ , and u∑ . Also, express the heat π? 

ejected to the outside in process d a using x±, x¥, and u∑.  

(4) Express the thermal efficiency ∫ of this thermodynamic cycle using x± and x≤. 

You can use Equations (1) and (2). Here, the thermal efficiency is defined as the 

work performed by the thermodynamic cycle in one cycle divided by the amount 
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of heat supplied to the working substance in one cycle. Note that processes e a 

and a e do not contribute to the thermal efficiency.  

(5) Based on the formula of ∫ obtained in Question 2(4), show one property that is 

desirable for materials of the cylinder and the piston to improve the efficiency of 

this thermodynamic cycle, together with the reasons in about 20 words. 

 


