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Problem 4  
 

1. Consider the motion of a uniform sphere placed on a slope with a rough surface at the 

angle, a, to the horizontal plane as shown in Figure 1. Here, M and r are mass and 

radius of the sphere, respectively, I is the moment of inertia around the central axis of 

the sphere, and g is vertically downward gravity acceleration
Coefficients of static 

and dynamic frictions between the sphere and the slope are denoted by µ and µ’, 

respectively. The x-axis is parallel to the slope (downwards as positive) and the y-axis 

is vertical to the slope (downwards as positive). The rotation angle around the rotation 

axis of the sphere is denoted by q (anticlockwise as positive). Assume that the sphere 

is at a stop at the initial state. Answer the following questions. 

(1) Calculate the acceleration in the x-direction for the center of the sphere when the 

sphere rolls down the slope without a slip. 

(2) Show the condition for the angle, a, using M, r, I, and µ, for which the sphere rolls 

down without a slip. 

(3) Calculate the acceleration in the x-direction for the center of the sphere when the 

sphere rolls down the slope with a slip. 

(4) Consider the case when a uniform circular disk with mass, M, radius, r, and 

thickness, t, rolls down without a slip on the same slope while the rotation axis 

keeps horizontal. Answer which acceleration is larger, the circular disk or the 

sphere in (1), together with the reason in around 50 words.  

 
Figure 1 
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2. Consider the stress acting on a uniform thin plate in the plane stress state as shown in 

Figure 2. Here, normal stresses acting on cross-sections perpendicular to the x- and y-

axes are denoted by sx and sy, respectively, and shear stress acting on these cross-

sections is denoted by txy. Answer the following questions. 

(1) Calculate the normal stress, sq , and the shear stress, tq , acting on the plane, A, 

which is inclined at the angle, q , from the plane perpendicular to the x-axis, A0. 

(2) Draw the Mohr’s stress circle and calculate the principal stresses, s1 and s2 (s1 > 

s2), and the maximum shear stress, tmax. 

(3) When s! = 50	MPa , s) = 30	MPa , t!) = 10√3		MPa , calculate the angle 

between the direction of maximum principal stress and the x-axis. 

 

 
Figure 2 
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Problem 5  
 

Let us consider the lattice specific heat of crystalline solids on the basis of statistical 

mechanics. Answer the following questions. Here, -.	and ℎ  denote the Boltzmann 

constant and the Planck constant, respectively. Let 0 = (-.2)
45  and 	ℏ = ℎ/(29) , 

where T is temperature. 

 

1. Consider a system with a constant volume, V, and a constant particle number, N, 

which is equilibrated in contact with a heat bath at temperature, T. The probability, 

:;,	of the system being at the i-th microscopic state is given by 

																																																								:; =
exp(−0A;)

B
	, �	

where A;	is the energy of the system at this state. Here, Z is called the partition 

function, and is defined as 

																																																									B = Cexp(−0A;)	.

;

�	

Here, the sum is assumed to be taken over all the possible microscopic states. Answer 

the following questions. 

(1) Show that the internal energy, U, of this system is given by 

																																																					E = −
F

F0
lnB		. � 

(2) Show that the heat capacity at constant volume, CV, is given by 

																																																IJ = -.0
K
FK

F0K
lnB			. � 

 

2.  Let us consider a crystalline solid that consists of m identical atoms. Each atom 

vibrates three-dimensionally around the equilibrium position. Assume that this 
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system can be regarded as the aggregation of 3m independent one-dimensional 

harmonic oscillators having the same eigen angular frequency, w. The energy of a 

one-dimensional harmonic oscillator with eigen angular frequency, w, is given by 

LM = NO +
1

2
QℏR								(O = 0,1,2,… )			. � 

Here, n is the number of excited phonons (excitation number). We denote the 

excitation number in the j-th harmonic oscillator as OT, and then, the microscopic 

state of this system can be specified by the 3m excitation numbers, 

(O5, OK, … , OT, … , OUV). Assuming that this system is equilibrated in contact with a 

heat bath at temperature, T, answer the following questions.  

(1) Show that the partition function, Z, is given by 

B = WCexp(−0L;)

X

;YZ

[

UV

	. � 

Show further that equation � is transformed to 

B =	\
exp(−0ℏR/2)

1 − exp(−0ℏR)
]

UV

.  

(2) Show that the internal energy, U, and the heat capacity at constant volume, CV, 

are, respectively, given by 

E = 3^ℏRN
1

2
+

1

exp(0ℏR) − 1
Q 	 

and 

	IJ = 3^-.(0ℏR)
K

exp(0ℏR)

(exp(0ℏR) − 1)K
		 .  

(3)  Derive the relation, IJ = 3^-., in a high temperature region of 2 ≫ ℏω/-.. 

This indicates that the molar specific heat of a solid element is 3R (R: gas 

constant). Answer the name of this law.  
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(4) Figure 1 shows the temperature dependence of the heat capacity at constant 

volume per 1 g (the specific heat at constant volume), experimentally obtained 

for a certain substance, Au, Ag or Cu. Answer which material the experimental 

result is for, together with the reason. Use the following values, if necessary, 

atomic weight of Cu: 63.5, atomic weight of Ag: 108, atomic weight of Au: 

197, Avogadro constant: 6.02 × 10KU	mol45, and -. = 1.38 × 104KU	J ⋅ K45. 

 

                            Figure 1 
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Problem 6  
 

Consider the interaction between two same noble (rare) gas atoms separated by distance, 

R, which is much larger than the atomic radius. The charge distributions inside the noble 

(rare) gas atoms fluctuate by quantum mechanical effect. Such situation is modeled by 

two one-dimensional harmonic oscillators, each of which consists of a positive charge 

and a negative charge existed on the identical x-axis as shown in Figure 1. The positive 

charges are fixed, and only the motion of the negative charges is considered. Assume that 

the charge amount of the positive charges is q and that of the negative charges is –q. The 

coordinate of the negative charge 1 with respect to the positive charge 1 is defined by x1. 

Similarly, the coordinate of the negative charge 2 with respect to the positive charge 2 is 

defined by x2. These coordinates are defined to be positive in the rightward direction in 

Figure 1. In what follows, the mass of the negative charges is defined as ^k , and      

ℏ = ℎ/(29)  where ℎ  is the Planck constant. Coulomb’s constant is defined by 

1/(49mZ)		where mZ is the vacuum permittivity. 

 

Figure 1 

 

The Schrӧdinger equation of a one-dimensional harmonic oscillator which consists of a 

particle with mass, ^n, can be generally given by the following equation �, 

o−
ℏK

2^k

pK

pqK
+
1

2
^kR

KqKrsM(q) = AMsM(q)	.												� 
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Here, R is eigen angular frequency, and q is the coordinate of the particle. sM(q) is 

the wavefunction of the n-th excited state and AM is the eigenvalue of the n-th excited 

state which is defined by the following equation �, 

AM = NO +
1

2
QℏR	.												� 

The wavefunctions of the ground state sZ(q) and the first excited state s5(q) are 

given by the following equations � and �, respectively, 

sZ(q) = IZ exp t−
^kR

2ℏ
qKu � � � � � � 

and 

s5(q) = v
2^kR

ℏ
q	sZ(q)	.										� 

Here, IZ is the normalization constant. 

 

(1) Obtain the following integral without using IZ, 

⟨s5|q|sZ⟩ = z s5
∗(q)

X

4X

q	sZ(q)	pq. 

Here, s5∗(q) expresses the complex conjugate of s5(q). You may use the following 

relation between the wavefunctions of the n-th excited state, sM(q), and the m-th 

excited state, sV(q), 

⟨sM|sV⟩ = z sM
∗(q)

X

4X

	sV(q)	pq = |MV	. 

(2) Obtain the Coulomb interaction energies between the positive charge 1 and the 

positive charge 2, the negative charge 1 and the negative charge 2, the positive charge 

1 and the negative charge 2, the positive charge 2 and the negative charge 1, 

respectively. Then, express the perturbation potential, V, as the summation of these 

Coulomb interaction energies. 
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(3) Assume that |x1|, |x2| << R. Show that V can be approximated as the following equation 

by taking the second-order Taylor series expansion, 

}~ −
�Kq5qK

29mZÄ
U
		. 

 

Next, when the effect of V is negligible and the two harmonic oscillators are independent 

of each other, the total Hamiltonian, ÅZ, can be given by the following equation �, 

ÅZ = −
ℏK

2^k

pK

pq5
	K +

1

2
^kR

Kq5
	K −

ℏK

2^k

pK

pqK
	K +

1

2
^kR

KqK
	K	.										� 

The eigen function of this Hamiltonian, ÇVM(q5, qK), is defined as equation � by the 

product of the wavefunctions of the m-th excited state, sV(q), and the n-th excited state, 

sM(q), and satisfies the Schrӧdinger equation 	, 

ÇVM(q5, qK) = sV(q5)sM(qK)� � � � � �	 

and 

ÅZÇVM(q5, qK) = AVMÇVM(q5, qK)	.												 

Here, the eigenvalue of ÅZ, AVM, is given by AV + AM. 

 

(4) Express the following integral as a function of R using neither sZ nor s5, 

⟨Ç55|}|ÇZZ⟩ = É Ç55
∗ (q5, qK)

X

4X

	}	ÇZZ(q5, qK)	pq5pqK	. 

Here, V can be expressed by the approximation of the perturbation potential shown 

in (3). 

(5) The energy change, ΔA, induced by the perturbation potential, V, is assumed to be 

given by the following equation, 

ΔA =
|⟨Ç55|}|ÇZZ⟩|

K

AZZ − A55
	.	 

Express ΔA as a function of R using neither sZ nor s5. 
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(6) Answer a name of the interaction between noble (rare) gas atoms that has the same 

dependence on interatomic distance as the result of (5). 
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Problem 7  
 

Let us consider phase separation processes of an A-B binary alloy. In Figure 1, the upper 

graph shows the compositional dependency of a free energy of mixing of the system per 

1 mol (∆ÜV) at temperature, T T1, and the bottom graph shows the phase diagram of 

the A-B binary alloy system. á5 and áK correspond to solid solutions with the same 

crystal structure but with different compositions. In the present case, the volume change 

due to mixture is negligibly small. Here, c is a concentration of B (mole fraction), and 

∆ÜV can be described by equation , 

∆ÜV(à) = Ωà(1 − à) + Ä2{(1 − à) ln(1 − à) + à ln à},    

where Ω is the interaction parameter (Ω > 0) and R is the gas constant. Answer the 

following questions. 

 

   
Figure 1 
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(1) Considering the fact that equation  is symmetric with respect to c = 0.5, obtain ca, 

which is the solubility limit of B in α1, at temperature, T. Here, we assume ca<<1. 

 

(2) At T=T1, if small concentration fluctuations occur in a uniform solid solution with a 

concentration of B, cb, ∆ÜV  decreases and a phase separation spontaneously 

proceeds. Answer the name of this type of phase separation process. Also, obtain the 

concentration range of B, where this type of phase separation process proceeds.  

 

(3) Obtain Tc, which is the critical temperature for the phase separation in this binary alloy. 

 

(4) If supersaturated solid solutions are within the two-phase co-existing concentration 

ranges other than those obtained in (2), and are to be phase separated, describe how 

the phase separation proceeds in around 60 words.  

 

When the phase separation process described in (2) spontaneously proceeds, the effect of 

the increase in energies due to the local concentration gradients cannot be neglected, and 

thus such effect should be considered. As schematically shown in Figure 2, suppose that 

a small concentration fluctuation of à − àZ = çZ cos0q is generated from the average 

concentration, c0, along the x-direction, where 0 is a wavenumber and çZ is a constant. 

Then, the total free energy, Ftotal, of the system including the term of excess energies due 

to the local concentration gradients, ê tëí
ë!
u
K

, is expressed as the following equation �, 

   Üìîìïñ = ∫ òô(à) + ê t
ëí

ë!
u
K

ö p}
J

,   

where ô(à) is a free energy per a unit volume of homogeneous material of concentration, 

c, V is volume and K (K > 0) is a constant.  
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Figure 2 

 

(5) When the following equation � is satisfied, show that the free energy of the system 

is decreased by the concentration fluctuation with the wavenumber of 0, 
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5

Kù
t
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ëíû
u
íYí†

	.     

Here, we assume the following equations � and � hold, 
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ëü(í)

ëí
u
íYí†

+
5

K
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K t
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ëíû
u
íYí†

     

and 
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(6) Consider the growth processes of the concentration fluctuations with time, according 
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à − àZ, can be given by the following equations � and , 
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Here, t is time, and ç and M are constants which are assumed to be invariable with 

concentration changes. In this case, describe the condition for the concentration 

fluctuations which can amplify their growth with time, and obtain the wavenumber, 

0V, which maximizes °(0). In addition, together with the result obtained in (5), 

explain how the small concentration fluctuations grow in the initial stage of this kind 

of phase separation in around 60 words. 
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Problem 8  
 

The technique using the segregation during the solidification is known as one of the 

materials purification methods, and is used for high purity silicon production, for example. 

Answer the following problems on the material solidification. 

 

1. Consider the solidification process during cooling of A-B alloy containing the dilute 

concentration of B, X0, from its uniformly melted state. Figure 1 shows the partial 

phase diagram of the A-B binary system. The melting point of A is TM and the solidus 

temperature of the A-B alloy containing X0 of B is T1. 

 

(1) Show the concentration of B in solid phase, just after starting the solidification 

of this alloy, using X0.�

  

(2) Show the concentration of B in the solid phase at the solidified fraction, fs, using 

X0 and fs when the diffusion of components in solid and liquid phases is fast 

enough during the solidification of this alloy (equilibrium solidification). 

�

(3) Show the liquid phase fraction at T1 < T < TM using T, TM, and T1 when the alloy 

solidifies in equilibrium. Also, draw approximately the relationship between the 

obtained liquid phase fraction and temperature. 

 

(4) Show the concentration of B in the solid phase at the solid / liquid interface, 

when solidified fraction is fs, using X0 and fs, in case that the diffusion of 

components in the solid phase is ignorable and the diffusion of components in 

the liquid phase is fast enough during the solidification of this alloy.  
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Figure 1 Partial phase diagram of the A-B binary system. 

 

2.  Consider uni-directional solidification of a metal in a mold with a sufficient wall 

thickness. Suppose that the temperature in the mold wall far enough away from the 

interface between the mold wall and the metal (the inner surface of the mold wall) is 

kept constant at 2 = 2Z	(K). When the thermal conductivity of the mold wall is 

sufficiently smaller than that of the metal, the temperatures of solid and liquid phases 

of the metal are kept at the melting point of the metal, TM (K), and temperature 

distribution in the mold wall at time, t (s), is expressed as equation , as shown in 

Figure 2, 

2 = 2Z + (2§ − 2Z) •1 − erf t
!

K√®©
u™	.      

Here, erf is the error function, x (m) is a distance from the inner surface of the mold 

wall, and α (m2·s-1) is thermal diffusivity of the mold wall. The density and specific 

heat of the mold wall are ρ (kg·m-3) and c (J·kg-1·K-1), and molar heat of fusion of 

the metal and molar volume of the solid phase of metal are LM (J·mol-1) and VM 

(m3·mol-1). The temperature dependences of α, ρ, and c are assumed to be negligible. 

Also, the following equation  holds on the error function, 
p

p´
erf	(´) =

2

√9
exp	(−´2) 		.      
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(1) Show that equation  satisfies one-dimensional equation of non-steady state 

heat conduction.  

 

(2) Show the quantity of the heat flux, q (J·m-2·s-1), flowing into the mold wall 

through the inner surface of the mold wall using the necessary terms from TM, T0, 

t, α, ρ, c , LM, and VM . 

�

(3) When the planer solid/liquid interface moves left in Figure 2 during 

solidification, the latent heat generated by solidification is assumed to be 

immediately released into the mold wall through the inner surface of the mold 

wall. Show the position of the solid/liquid interface from the inner surface of the 

mold wall using the necessary terms from TM, T0, t, α, ρ, c, LM, and VM . 

 

 

 
 

 

Figure 2 Temperature distribution in the cross section of the mold at t (s). 
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