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I.

[Problem 4]

Consider the motion of a uniform sphere placed on a slope with a rough surface at the

angle, «, to the horizontal plane as shown in Figure 1. Here, M and r are mass and

radius of the sphere, respectively, I is the moment of inertia around the central axis of

the sphere, and g is vertically downward gravity acceleration. Coefficients of static

and dynamic frictions between the sphere and the slope are denoted by u and u’,

respectively. The x-axis is parallel to the slope (downwards as positive) and the y-axis

is vertical to the slope (downwards as positive). The rotation angle around the rotation

axis of the sphere is denoted by & (anticlockwise as positive). Assume that the sphere

is at a stop at the initial state. Answer the following questions.

(1) Calculate the acceleration in the x-direction for the center of the sphere when the
sphere rolls down the slope without a slip.

(2) Show the condition for the angle, «, using M, r, I, and u, for which the sphere rolls
down without a slip.

(3) Calculate the acceleration in the x-direction for the center of the sphere when the
sphere rolls down the slope with a slip.

(4) Consider the case when a uniform circular disk with mass, M, radius, », and
thickness, ¢, rolls down without a slip on the same slope while the rotation axis
keeps horizontal. Answer which acceleration is larger, the circular disk or the

sphere in (1), together with the reason in around 50 words.




2. Consider the stress acting on a uniform thin plate in the plane stress state as shown in
Figure 2. Here, normal stresses acting on cross-sections perpendicular to the x- and y-
axes are denoted by ox and o, respectively, and shear stress acting on these cross-
sections is denoted by z,. Answer the following questions.

(1) Calculate the normal stress, oy, and the shear stress, 7y, acting on the plane, A4,
which is inclined at the angle, @, from the plane perpendicular to the x-axis, Ao.

(2) Draw the Mohr’s stress circle and calculate the principal stresses, o1 and o» (o1 >
02), and the maximum shear stress, Zmax.

(3) When oy =50 MPa, o, =30MPa, 7, = 103 MPa, calculate the angle

between the direction of maximum principal stress and the x-axis.

G r
Y
Txy
oM\
Oy l Co I_Txy
— —
Ty Oy Oy
Ao
y 4—\74
TX
Y
* Gyl
Figure 2



[Problem 5]

Let us consider the lattice specific heat of crystalline solids on the basis of statistical
mechanics. Answer the following questions. Here, kg and h denote the Boltzmann
constant and the Planck constant, respectively. Let f = (kgT)™! and h = h/(2m),

where T is temperature.

1. Consider a system with a constant volume, V, and a constant particle number, N,
which is equilibrated in contact with a heat bath at temperature, 7. The probability,
p;, of the system being at the i-th microscopic state is given by

—BE;
pi=eXp(Zﬁ ) o

where E; is the energy of the system at this state. Here, Z is called the partition

function, and is defined as
Z = Z exp(—pE;) . ®
i

Here, the sum is assumed to be taken over all the possible microscopic states. Answer
the following questions.

(1) Show that the internal energy, U, of this system is given by

d
U——%an. @

(2) Show that the heat capacity at constant volume, Cy, is given by

2

d
CV:kB'Bza_ﬁzan . @

2. Let us consider a crystalline solid that consists of m identical atoms. Each atom

vibrates three-dimensionally around the equilibrium position. Assume that this



system can be regarded as the aggregation of 3m independent one-dimensional
harmonic oscillators having the same eigen angular frequency, . The energy of a

one-dimensional harmonic oscillator with eigen angular frequency, @, is given by

1
&q = (n + E) hw n=012,..) . ®

Here, n is the number of excited phonons (excitation number). We denote the
excitation number in the j-th harmonic oscillator as n;, and then, the microscopic
state of this system can be specified by the 3m excitation numbers,
(ny,ny, ..., M, ..., N3y ). Assuming that this system is equilibrated in contact with a
heat bath at temperature, 7, answer the following questions.

(1) Show that the partition function, Z, is given by

oo 3m
Z = (Z eXp(—ﬁ&-)) : ®

=0
Show further that equation ® is transformed to

, _ (exppho/2) \
B (1—exp(—ﬁhw)> '

@

(2) Show that the internal energy, U, and the heat capacity at constant volume, Cy,

are, respectively, given by

1 1
U= 3mhw (E + exp(Bhw) — 1)

and

exp(Bhw)
(exp(Bhw) —1)?

Cy = 3mkg(Bhw)? ©)

(3) Derive the relation, €, = 3mkg, in a high temperature region of T > Aw/kg.
This indicates that the molar specific heat of a solid element is 3R (R: gas

constant). Answer the name of this law.



(4) Figure 1 shows the temperature dependence of the heat capacity at constant
volume per 1 g (the specific heat at constant volume), experimentally obtained
for a certain substance, Au, Ag or Cu. Answer which material the experimental
result is for, together with the reason. Use the following values, if necessary,
atomic weight of Cu: 63.5, atomic weight of Ag: 108, atomic weight of Au:

197, Avogadro constant: 6.02 X 1023 mol™!, and kg = 1.38 x 10723 . K1,

014 T T T T 1 1
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0.10

0.08

0.06

0.04

0.02

000 1 1 1 1 1 1
0 50 100 150 200 250 300 350

Temperature (K)

Specific heat at constant volume (J-g™'*K™)

Figure 1



[Problem 6]

Consider the interaction between two same noble (rare) gas atoms separated by distance,
R, which is much larger than the atomic radius. The charge distributions inside the noble
(rare) gas atoms fluctuate by quantum mechanical effect. Such situation is modeled by
two one-dimensional harmonic oscillators, each of which consists of a positive charge
and a negative charge existed on the identical x-axis as shown in Figure 1. The positive
charges are fixed, and only the motion of the negative charges is considered. Assume that
the charge amount of the positive charges is ¢ and that of the negative charges is —g. The
coordinate of the negative charge 1 with respect to the positive charge 1 is defined by x;.
Similarly, the coordinate of the negative charge 2 with respect to the positive charge 2 is
defined by x>. These coordinates are defined to be positive in the rightward direction in
Figure 1. In what follows, the mass of the negative charges is defined as m,, and
h = h/(2r) where h is the Planck constant. Coulomb’s constant is defined by

1/(4mey) where €, is the vacuum permittivity.

Atom 1 Atom 2
positive negative positive negative
charge 1 charge 1 charge 2 charge 2
(DD DonO—
b > . Xxaxis
R i
X i X2
Figure 1

The Schrodinger equation of a one-dimensional harmonic oscillator which consists of a
particle with mass, m,, can be generally given by the following equation (D,

h? d* 1
2m,dx? 2

+ _mewzxz}q)n(x) = Enq)n(x) . @



Here, w is eigen angular frequency, and x is the coordinate of the particle. ¢, (x) is
the wavefunction of the n-th excited state and E,, is the eigenvalue of the n-th excited

state which is defined by the following equation @),
1
E, = (n + E) hw . @

The wavefunctions of the ground state @o(x) and the first excited state ¢,(x) are

given by the following equations 3 and @), respectively,

— _mea) 2
0o(x) =C eXp( ETE x ) @
and
2m,w
P1(x) = he xpo(x). @

Here, C, is the normalization constant.

(1) Obtain the following integral without using C,,

(p11xl@o) = j @i (x) x @y (x) dx.

Here, ¢;(x) expresses the complex conjugate of ¢, (x). You may use the following
relation between the wavefunctions of the n-th excited state, ¢,(x), and the m-th

excited state, ¢, (x),

(Pl ) = j 05() () dx = Sy -

(2) Obtain the Coulomb interaction energies between the positive charge 1 and the
positive charge 2, the negative charge 1 and the negative charge 2, the positive charge
1 and the negative charge 2, the positive charge 2 and the negative charge 1,
respectively. Then, express the perturbation potential, V, as the summation of these

Coulomb interaction energies.



(3) Assume that |x1|, |x2| << R. Show that ' can be approximated as the following equation

by taking the second-order Taylor series expansion,

2
q-x1X;
2megR3

~

Next, when the effect of V' is negligible and the two harmonic oscillators are independent

of each other, the total Hamiltonian, H,, can be given by the following equation &),

h? dz 1 nz d* 1
- _ 2702 - 2..2
0 2m, dx? o Mmew X 2m, dx;} oMWt ®

The eigen function of this Hamiltonian, ¢,,,(x;,x5), is defined as equation ® by the
product of the wavefunctions of the m-th excited state, ¢,,(x), and the n-th excited state,
¢, (x), and satisfies the Schrodinger equation (D,

¢mn(x1: xz) = q)m(xl)q)n(xz) ®

and

Hy®mn (x1,%2) = Epppn@mn (X1, X2) . ©)

Here, the eigenvalue of H,, E,,,,is givenby E,, + E,.

(4) Express the following integral as a function of R using neither ¢, nor ¢,

(P111VIoo) = jj $11(x1,%2) V oo (x4, x2) dx1dx, .

Here, V' can be expressed by the approximation of the perturbation potential shown
in (3).
(5) The energy change, AE, induced by the perturbation potential, V, is assumed to be

given by the following equation,

_ s Voo

AE
Eoo — E1q

Express AE as a function of R using neither ¢, nor ¢;.



(6) Answer a name of the interaction between noble (rare) gas atoms that has the same

dependence on interatomic distance as the result of (5).



[Problem 7]

Let us consider phase separation processes of an A-B binary alloy. In Figure 1, the upper
graph shows the compositional dependency of a free energy of mixing of the system per
1 mol (AF™) at temperature, 7= T1, and the bottom graph shows the phase diagram of
the A-B binary alloy system. a; and a, correspond to solid solutions with the same
crystal structure but with different compositions. In the present case, the volume change
due to mixture is negligibly small. Here, c is a concentration of B (mole fraction), and
AF™ can be described by equation (D,
AF™(c)=Qc(1—¢c)+RT{(1—c)In(1 —¢) +clnc}, O

where Q is the interaction parameter (2 > 0) and R is the gas constant. Answer the

following questions.

Free energy of mixing, AF™

|

g

Temperature, T

Concentration of B, ¢ (mole fraction)

Figure 1
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(1) Considering the fact that equation (D is symmetric with respect to ¢ = 0.5, obtain c,,

which is the solubility limit of B in a1, at temperature, 7. Here, we assume ¢,<<l.

(2) At T=T, if small concentration fluctuations occur in a uniform solid solution with a
concentration of B, ¢,, AF™ decreases and a phase separation spontaneously
proceeds. Answer the name of this type of phase separation process. Also, obtain the

concentration range of B, where this type of phase separation process proceeds.
(3) Obtain T, which is the critical temperature for the phase separation in this binary alloy.

(4) If supersaturated solid solutions are within the two-phase co-existing concentration
ranges other than those obtained in (2), and are to be phase separated, describe how

the phase separation proceeds in around 60 words.

When the phase separation process described in (2) spontaneously proceeds, the effect of
the increase in energies due to the local concentration gradients cannot be neglected, and
thus such effect should be considered. As schematically shown in Figure 2, suppose that
a small concentration fluctuation of ¢ — ¢y = Ay cos fx is generated from the average
concentration, c,, along the x-direction, where [ is a wavenumber and A, is a constant.
Then, the total free energy, Fioal, of the system including the term of excess energies due

2
to the local concentration gradients, K (Z—:) , is expressed as the following equation (@),

Fiotal = fv [f(c) + K(Z—:)Z] av, @

where f(c) isa free energy per a unit volume of homogeneous material of concentration,

¢, Vs volume and K (K > 0) is a constant.
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(5) When the following equation (3 is satisfied, show that the free energy of the system

is decreased by the concentration fluctuation with the wavenumber of S,

_ (1@
'8<\/ 21(( dc? )C=CO' ©

Here, we assume the following equations @ and & hold,

@ =fle + =) (B2) _ +3-2(F2) @

2 dc?

and

[(c—=ce)dV =0. -®

(6) Consider the growth processes of the concentration fluctuations with time, according
to the diffusion equation. In the initial stage, the amount of concentration fluctuations,
¢ — ¢y, can be given by the following equations ©& and @),

c—co=Aexp(v(B)t)cospx, ©

where

dc?

v(B) =— ((w)czco + 21(32) MB%. @
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Here, ¢ is time, and A and M are constants which are assumed to be invariable with
concentration changes. In this case, describe the condition for the concentration
fluctuations which can amplify their growth with time, and obtain the wavenumber,
B, Which maximizes v(B). In addition, together with the result obtained in (5),
explain how the small concentration fluctuations grow in the initial stage of this kind

of phase separation in around 60 words.
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[Problem 8]

The technique using the segregation during the solidification is known as one of the
materials purification methods, and is used for high purity silicon production, for example.

Answer the following problems on the material solidification.

1. Consider the solidification process during cooling of A-B alloy containing the dilute
concentration of B, Xo, from its uniformly melted state. Figure 1 shows the partial
phase diagram of the A-B binary system. The melting point of A is Ty and the solidus

temperature of the A-B alloy containing Xo of B is 77.

(1) Show the concentration of B in solid phase, just after starting the solidification

of this alloy, using Xo.

(2) Show the concentration of B in the solid phase at the solidified fraction, f;, using
Xo and f; when the diffusion of components in solid and liquid phases is fast

enough during the solidification of this alloy (equilibrium solidification).

(3) Show the liquid phase fraction at 71 < T'< Ty, using 7T, Ty, and 71 when the alloy
solidifies in equilibrium. Also, draw approximately the relationship between the

obtained liquid phase fraction and temperature.

(4) Show the concentration of B in the solid phase at the solid / liquid interface,
when solidified fraction is f;, using Xo and f;, in case that the diffusion of
components in the solid phase is ignorable and the diffusion of components in

the liquid phase is fast enough during the solidification of this alloy.

14



Temperature, T
<

=3

0 .
B concentration

Figure 1 Partial phase diagram of the A-B binary system.

Consider uni-directional solidification of a metal in a mold with a sufficient wall
thickness. Suppose that the temperature in the mold wall far enough away from the
interface between the mold wall and the metal (the inner surface of the mold wall) is
kept constant at T = T, (K). When the thermal conductivity of the mold wall is
sufficiently smaller than that of the metal, the temperatures of solid and liquid phases
of the metal are kept at the melting point of the metal, 7T/ (K), and temperature
distribution in the mold wall at time, ¢ (s), is expressed as equation (D, as shown in
Figure 2,
T =T+ (Ty—To) {1 - erf(zim)}. ®

Here, erf is the error function, x (m) is a distance from the inner surface of the mold
wall, and o (m?-s7!) is thermal diffusivity of the mold wall. The density and specific
heat of the mold wall are p (kg'm~) and ¢ (J-kg™!-K™!), and molar heat of fusion of
the metal and molar volume of the solid phase of metal are Ly (J-mol™") and Vi
(m3-mol™"). The temperature dependences of a, p, and ¢ are assumed to be negligible.

Also, the following equation (@) holds on the error function,

d _ 2 2
erf (2) = zexp (=2°) . @

15



(1) Show that equation (D satisfies one-dimensional equation of non-steady state

heat conduction.

(2) Show the quantity of the heat flux, g (J-m=-s7"), flowing into the mold wall
through the inner surface of the mold wall using the necessary terms from 7}, 7o,

t,a,p,c, Ly and V.

(3) When the planer solid/liquid interface moves left in Figure 2 during
solidification, the latent heat generated by solidification is assumed to be
immediately released into the mold wall through the inner surface of the mold
wall. Show the position of the solid/liquid interface from the inner surface of the

mold wall using the necessary terms from 7w, To, t, a, p, ¢, Lu, and V.

A
Metal 7 Mold wall
R Tu

Liquid | Solid
phase phase

Progress of

solidifEication E

0 g

Inner surface of mold wall

Figure 2 Temperature distribution in the cross section of the mold at 7 (s).
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