平成30年度 # 東京大学大学院 工学系研究科 マテリアル工学専攻 入学試験問題 ## マテリアル工学基礎 平成 29 年 8 月 29 日 (火) 午前 9:00 ~ 12:00 | 受験番号(Examinee No.) | | | | | | |--------------------|--|--|--|-------|--| | | | | | | | | | | | | 41111 | | | | | | | | | #### - 注意事項 - - 1) 試験時間は180分である。 - 2) 問題はマテリアル工学基礎の問題冊子(5 問)および 化学(マテリアル工学専攻受験者用)の問題冊子(3 問)の8問ある。この中から4問を選択して解答する こと。5 問以上解答した場合は全問無効となる。 - 3) 解答は必ず1問を1枚の解答用紙に記入すること。解答用紙には選択した問題の番号を記入すること。用紙の表面だけで書ききれない場合には、裏面を使用すること。 - 4) 日本語か英語で解答すること。 - 5) 計算には問題冊子の余白などを適宜使用すること。 - 6) 問題冊子にも受験番号を記入すること。 - 7) 問題冊子は持ち帰らないこと。 (計算用紙) (計算用紙) ### 【第4問】 外径 2a, 内径 2b, 長さ L の円筒について,以下の問いに答えよ。ただし、この円筒は弾性体であるが 1. に関しては剛体近似できるものとする。 - 1. 図1に示すように、床に置かれた円筒に対して重心 O から h (> 0) の高さに、水平方向の衝撃を加えた場合の運動について考える。ただし、円筒の質量、円筒と床の動摩擦係数、および重力加速度は、それぞれ M, μ , およびgとする。また、衝撃直後の円筒の重心の速度を v_0 、円筒の中心軸まわりの角速度を ω_0 とする。このとき円筒の外周速度 u_0 は $u_0 = a\omega_0$ で与えられる。衝撃直後にすべらないで転がるときの衝撃を加える高さを h_0 とする。 - (1) 円筒の中心軸まわりの慣性モーメントを求めよ。 - (2) h_0 を a, b を用いて表せ。 - (3) $h > h_0$ の場合を考える。衝撃後の重心の速度 v, 円筒の外周速度 u に関する円筒の運動方程式を示せ。 - (4) $h > h_0$ の場合、衝撃後すべらないで転がるようになるまでの時間 t_1 と その際の重心の速度 v_1 を求めよ。 - 2. 図 2 に示すように、この円筒の長手方向の中心に集中荷重 P を加える。支点でのたわみはゼロとする。ただし、ヤング率を E とし、ベルヌーイ・オイラーの仮定を用いるものとする。 - (1) 断面に生じる曲げモーメントの分布を求めよ。 - (2) 断面二次モーメントを求めよ。 - (3) 断面に生じる引張応力の最大値を求めよ。 - (4) たわみの最大値を求めよ。 ### 【第5問】 マクスウェル方程式は以下の式で与えられる。 $$\nabla \cdot \mathbf{D} = \rho$$ $$\nabla \cdot \mathbf{B} = 0$$ $$\nabla \times E = -\frac{\partial B}{\partial t}$$ $$\nabla \times \boldsymbol{H} = \boldsymbol{i} + \frac{\partial \boldsymbol{D}}{\partial t}$$ ここで、E は電場、D は電東密度、H は磁場、B は磁東密度、 ρ は電荷密度、i は電流密度である。非磁性、絶縁性、かつ等方的な媒質 ($\rho\Box=0$, i=0, $D=\varepsilon_i\varepsilon_0E$ 、 $B=\mu_0H$ 、 ε_0 と μ_0 はそれぞれ真空の誘電率と透磁率、 ε_r は媒質の比誘電率)中を伝播する電磁波について、以下の問いに答えよ。 1. ベクトル恒等式 $\nabla \cdot (X \times Y) = Y \cdot (\nabla \times X) - X \cdot (\nabla \times Y)$ を用いて $$\boldsymbol{\nabla} \cdot (\boldsymbol{E} \times \boldsymbol{H}) = -\frac{\partial}{\partial t} \left(\frac{\varepsilon_{r} \varepsilon_{0}}{2} \left| \boldsymbol{E} \right|^{2} + \frac{\mu_{0}}{2} \left| \boldsymbol{H} \right|^{2} \right)$$ が成り立つことを示せ。また、この式の物理的意味を 80 字程度で説明せよ。 2. この媒質中を x 軸方向に伝播する平面波 $$\boldsymbol{E}(\boldsymbol{r},t) = \begin{pmatrix} 0 \\ E_0 \\ 0 \end{pmatrix} \cos(kx - \omega t)$$ を考えよう。ここで、 E_0 は電場振幅、k は波数ベクトルの大きさ、 ω は角振動数である。 - (1) 磁場 H(r,t) を求めよ。また、k と ω の間の関係を示せ。 - (2) ポインティングベクトル $S(=E \times H)$ を求めよ。 - (3) 電磁波の強度(単位面積当たりのパワー)I はポインティングベクトルの大きさ |S| の時間平均で与えられる。強度 I を E_0 を用いて表せ。 - (4) 光ファイバーのコア内の電場の振幅を計算しよう。比誘電率 $\varepsilon_r = 2.1$, 直径 $10~\mu m$ の円形のコア内をパワー 10~m W の光が導波されている。 光はコア内に完全に閉じ込められており,かつコア内での光強度分布は一様であると仮定して E_0 を計算せよ。なお,必要に応じて以下の値を用いてよい。 $\varepsilon_0 = 8.9 \times 10^{-12}~\mathrm{C\cdot V^{-1}\cdot m^{-1}}$, $\mu_0 = 1.3 \times 10^{-6}~\mathrm{H\cdot m^{-1}}$ 。 ### 【第6問】 半導体の電気伝導をキャリアの移動現象から議論する。式導出の際は符号に注 意して,以下の問いに答えよ。 1. キャリアが移動する基本的な機構はドリフトと拡散である。キャリアは 1 次元方向 (x 方向)にのみ移動できるものとする。半導体内に電場 E が存在する場合,電子は電場により加速される一方,フォノン散乱などにより減速される。そのため,電場の向きを x 正方向とすると,電子の運動方程式は式1で記述される。 $$m^* \frac{dv_x}{dt} = -eE - m^* \frac{v_x}{\tau}$$ (1) m*: 電子の有効質量, e: 電気素量, r: 電子の緩和時間, vx: 電子の速度 - (1) 定常状態における電子のドリフト速度 v_{drift} を式①中に含まれる物理定数および物理量のみを使って記述せよ。 - (2) 前問を参照しつつ,電子濃度 n を用いてドリフトによる電流密度 i_{drift} を記述せよ。一方,半導体内に電子濃度の勾配 dn/dx が存在する場合には,拡散により電子が移動する。電子の拡散係数を D_e とし,拡散による電流密度 i_{drift} を記述せよ。これらをもとに,全電流密度 i_{total} を記述せよ。 - (3) 前間で求めた i_{drift} は電子移動度 μ_e を用いて表すことができる。このとき、 i_{drift} 中の D_e と i_{drift} 中の μ_e の間には式②のアインシュタインの関係が成り立つことが知られている。エネルギー等分配則を利用して、アインシュタインの関係を導出せよ。 $$D_{\rm e} = \left(\frac{kT}{e}\right)\mu_{\rm e} \tag{2}$$ k: ボルツマン定数、T: 温度 なお, De は式③で表されるとしてよい。 $$D_{c} = v_{th} l$$ 3 v_{th}: 電子の熱速度, l: 電子の平均自由行程 2. アクセプタとドナーが p 領域と n 領域にそれぞれ均一に分布している理想的な pn 接合について考える。以下の文章の空欄を埋めよ。 接合前後における電子と正孔の挙動を考える。ここでは、外部とのキャリアの出入りはないものとする。接合前の n 領域では、伝導帯の電子と正に帯電したドナーの数は等しく、(a)条件が保たれている。また、p 領域についても同条件が保たれている。接合後は、キャリアの濃度差により、電子は n 領域の伝導帯から p 領域の伝導帯へ、正孔は p 領域の価電子帯から n 領域の価電子帯へ(b)により移動する。従って、接合部付近には正に帯電したドナーと負に帯電したアクセプタからなる電気二重層が形成される。これにより、キャリアは(b)方向と逆方向に(c)により移動する。最終的に、p 領域と n 領域の(d)が一致した時点でこれらはつり合い、熱平衡状態に達する。このキャリアがほとんど存在しない空間を(e)と呼び、生じたポテンシャル障壁の高さを(f)と呼ぶ。 pn 接合にバイアスを印加すると,図1に示す電流電圧特性が得られる。 逆バイアス (V < 0) 印加時における電流の生成機構を考える。逆バイアスを 印加すると接合部に存在するポテンシャル障壁は (g) くなるため,n 領域 中の電子や p 領域中の正孔などの (h) の移動による電流は無視できるほど小さい。従って,n 領域中の正孔や p 領域中の電子のような (i) の移動による電流が支配的となる。具体的には,障壁端近傍の (i) が障壁を下り,各領域内に濃度勾配が生じるため,障壁に向かって (i) が (b) により移動し電流が流れる。このとき, (i) は (j) によって生じるため,その濃度は極めて低く,逆バイアス印加時の電流は極めて小さい。 ### 【第7問】 - 1. 面心立方 (FCC) 構造, 体心立方 (BCC) 構造, および六方最密充填 (HCP) 構造を有する金属の塑性変形に関する以下の問いに答えよ。 - (1) 一般的に、金属結晶の最密面と最密方向が塑性変形における一次すべり面と一次すべり方向になる。BCC 構造を有する金属結晶における最密面と最密方向を 1 つずつ記せ。なお、ミラー指数の表記を用いること。 - (2) HCP 構造を有する金属結晶の基本単位胞における c 軸と a 軸の格子 定数の比(c/a) は物質によって異なる。剛体球より作られた理想的な HCP 基本単位胞の c/a を算出せよ。なお有効数字は 3 桁とする。 - (3) HCP 構造を有する単体金属は、一次すべり面が異なる 2 つのグループ に分けられる。このとき、一次すべり面と c/a の値には相関があり、少数の例外を除いて、c/a = 1.60 を境にして一次すべり面が切り替わることが知られている。c/a > 1.60 と c/a < 1.60 のそれぞれの場合の一次すべり面をミラー指数を用いて答えよ。 - (4) FCC, BCC, もしくは HCP 構造を有するそれぞれの多結晶体を破断まで引張変形させた場合を考える。一般的にのびが一番小さいものはどれか。理由とともに 20 字程度で記せ。 - (5) 格子定数 a の FCC 構造を有する結晶において,一次すべり系の転位は 以下の式のように分解することが知られている。この分解反応により転 位の自己エネルギーが下がることを示せ。 $$\frac{a}{2}[110] \rightarrow \frac{a}{6}[211] + \frac{a}{6}[12\overline{1}]$$ - 2. FCC 構造を有する銅の単結晶の単一すべり方位の引張試験を室温で行った。 その際の応力とひずみの関係には、弾性変形ののちに加工硬化曲線が現れる。 以下の問いに答えよ。 - (1) 加工硬化曲線には 3 つのステージ (I, II, III) が現れる。縦軸に応力, 横軸にひずみをとり, 加工硬化曲線を模式的に描け。ただし各ステージ I, II, III における傾きの違いがわかるようにすること。 - (2) 各ステージ I, II, III においてどのような現象が生じているのか。それ ぞれ 40 字程度で説明せよ。 - 3. 金属材料を強化するには加工硬化のほかに,以下の 2 つの異種元素添加による転位が関わる強化機構がある。それぞれの強化機構について,特にカッコ内の単語を用いて 80 字程度で説明せよ。 - (1) 分散強化機構 (オロワンループ) - (2) 固溶強化機構 (コットレル雰囲気) ### 【第8問】 化学反応は様々な化学物質の合成やエネルギー変換に用いられている。ここでは水素ガス製造と水素ガスを利用する燃料電池について考える。なお,g と l は気体および液体状態を表し,気体化学種は全て完全気体とする。また気体定数 R = $8.314 \, J \cdot K^{-1} \cdot mol^{-1}$, ファラデー定数 $F = 96490 \, C \cdot mol^{-1}$ である。標準状態は 298 K, l atm $(=1.013 \times 10^5 \, Pa)$ の状態とする。 1. 1 mol のメタンガス $CH_4(g)$ が反応①に従って水蒸気 $H_2O(g)$ と反応し、二酸化炭素ガス $CO_2(g)$ と水素ガス $H_2(g)$ が生成した。このときの反応の標準エンタルピー $\Delta_r H_{298}^\circ$ [kJ] と標準内部エネルギー $\Delta_r U_{298}^\circ$ [kJ] を、表 1 に示した熱化学データを用いて計算し、有効数字 3 桁で答えよ。 $$CH_4(g) + 2H_2O(g) \rightarrow CO_2(g) + 4H_2(g)$$ (1) 2. 全圧 1 atm のもとで、断熱容器中で $CH_4(g)$ 1 mol を純酸素ガス $O_2(g)$ により完全に燃焼させて $CO_2(g)$ と $H_2O(g)$ を生成させた。反応前の $CH_4(g)$ と $O_2(g)$ の温度は 298 K であり、反応後には $CH_4(g)$ と $O_2(g)$ は残っていなかった。生成物の温度(断熱火炎温度)を求めよ。解答に当たっては、燃焼反応式を示したうえで、表 1 のデータを用いて断熱火炎温度を計算し、有効数字 3 桁で答えよ。なお、反応に関与する化学種の標準定圧モル熱容量 $C_{p,m}^{\circ}$ [$J\cdot K^{-1}\cdot mol^{-1}$] は温度に依存しないものとする。 メタンガスの水蒸気改質反応(反応①)によって生成した水素ガスは、改質ガスから分離する必要がある。このため改質温度の 873 K 付近において、水素ガスを分離して効率的に改質反応を進める高温作動型の水素分離膜が開発されている。ここでは水素が原子状で溶解・拡散することが知られている Pd 分離膜について考える。 3. $H_2(g)$ は反応②により Pd 中に水素原子として溶解し、希薄 Pd-H 合金となる。ここで、 $\underline{H}(Pd)$ は Pd 中に溶解した水素原子を表し、その活量 $a_{\underline{H}}$ は水素原子のモル分率で表される(Henry 基準)。 $$H_2(g) \rightarrow 2H(Pd)$$ ② この合金は理想希薄溶体として振る舞う。水素ガス活量 P_{H2} (= p_{H2}/P°) と合金中の平衡水素濃度 C_H [mol·cm⁻³] の関係を求めよ。ここで, P° [atm] (= 1 atm) と p_{H2} [atm] はそれぞれ標準圧力および水素ガス分圧を表す。なお,反応②の平衡定数は K_H とし,合金のモル体積 \overline{V} [cm³·mol⁻¹] は水素濃度によらず一定とする。 4. Pd 膜両側の P_{H2} 値が異なるとき、この Pd 膜(膜厚: d [cm])を透過する流束(フラックス)が生じる。Pd 膜中の水素の拡散が律速している場合、定常状態における Pd 膜中の水素濃度分布を模式的に図示し、Pd 膜を透過する水素原子流束 J_{H} [mol·cm⁻²·s⁻¹] を表す式を求めよ。なお、Pd 膜両側の平衡水素濃度をそれぞれ C'_{H} [mol·cm⁻³] および C''_{H} [mol·cm⁻³] とし、Pd 膜中の水素原子の拡散係数 D_{H} [cm²·s⁻¹] は水素濃度にかかわらず一定とする。 現在,酸化物系セラミックス電解質ならびに高分子電解質を用いた燃料電池が 定置型燃料電池として実用化されている。ここでは, H^+ が伝導する電解質を用 いた以下の構成の高分子形燃料電池について考える。ただし, p_{02} [atm] は酸素 ガス分圧, $a_{H,O(1)}$ は純水を基準とした水の活量である。 $$H_2(g)$$, Pt $p_{H_2} = 1.00 \, [atm]$ H^+ $p_{O_2}(g)$, $H_2O(l)$, Pt $p_{O_2} = 0.205 \, [atm]$ $a_{H_2O(l)} = 1$ 5. この電池の右極, 左極の半電池反応をそれぞれ示し, 全電池反応式を求めよ。 6. 表 1 のデータを用い、298 K におけるこの電池の標準起電力 E° [V] および 開回路電圧(平衡起電力)E [V] を計算し、有効数字 3 桁で答えよ。 表 1 熱化学データ (298 K, 1 atm) | 化学種 | $\Delta_{ m f} H_{298}^{\circ}$ | $\Delta_{_{\mathrm{f}}}G_{_{298}}^{\circ}$ | $C_{p,m}^{\circ}$ | |----------------------|---------------------------------|--------------------------------------------|-----------------------------------| | 1亿一千年 | [kJ·mol ⁻¹] | [kJ·mol ⁻¹] | $[J \cdot K^{-1} \cdot mol^{-1}]$ | | CH ₄ (g) | -74.81 | -50.72 | 35.31 | | $CO_2(g)$ | -393.5 | -394.4 | 37.11 | | $H_2O(l)$ | -285.8 | -237.1 | - | | H ₂ O (g) | -241.8 | -228.6 | 33.58 | | $H_2(g)$ | 0 | 0 | - | | $O_2(g)$ | 0 | 0 | 29.36 | $\Delta_{\mathrm{f}}H_{298}^{\circ}$:標準生成エンタルピー $\Delta_{\mathrm{f}}G_{298}^{\circ}$: 標準生成 Gibbs エネルギー $C_{p,m}^{\circ}$:標準定圧モル熱容量 (計算用紙) (計算用紙) # Department of Materials Engineering Graduate School of Engineering The University of Tokyo ### Entrance Examination for YR 2018 ## Fundamentals of Materials Engineering 9:00 am ~ 12:00 pm Tuesday, August 29, 2017 | Examinee No. | | | | | | | |--------------|---|---|---|---|----|--| | Г | | | | | | | | | | | 1 | | - | | | | | į | | | 1 | | | | [| 1 | | 1 | į. | | | | | | İ | | į. | | | | 1 | į | | | | | #### - Attentions - - 1) The examination duration is 180 minutes. - Select four problems out of eight problems set in the booklets of Fundamentals of Materials Engineering with five problems and Chemistry (Applicants for the Department of Materials Engineering) with three problems. If you answer more than four problems, all your answers will become invalid. - 3) You must use only one answering sheet for each problem. Write down the problem number selected on each answering sheet. You may use the reverse side of the answering sheet, if necessary. - 4) Answer in English or Japanese. - 5) You may use blank spaces of the booklets as calculation sheets. - 6) Fill in your examinee number on the booklets. - 7) The booklets must NOT be taken out after the exam. (Calculation Sheet) (Calculation Sheet) ### [Problem 4] Consider a cylinder with outer diameter 2a, inner diameter 2b, and length L. Answer the following questions. Here, this cylinder is considered as a rigid body in Question 1, while it is an elastic body. - 1. Consider the motion caused by horizontal impact force at height h (> 0) from the center of gravity O of the cylinder placed on the floor, as shown in Figure 1. Here, mass of cylinder, dynamic coefficient of friction between cylinder and floor, and gravitational acceleration are denoted as M, μ ', and g, respectively. Also, the velocity of the center of gravity of the cylinder immediately after the impact and the angular velocity about the central axis of the cylinder are denoted as v_0 and ω_0 , respectively. Here, the tangential velocity of the cylinder u_0 is given by $u_0 = a\omega_0$. The height of the impact in the case of rolling without slipping immediately after the impact is denoted as h_0 . - (1) Obtain the moment of inertia about the central axis of the cylinder. - (2) Show h_0 using a and b. - (3) Consider the case of $h > h_0$. Show the equations of motion of the cylinder on the velocity of the center of gravity v and the tangential velocity of the cylinder u. - (4) In the case of $h > h_0$, obtain the time t_1 taken for the cylinder to start rolling without slipping after the impact, and the velocity of the center of gravity v_1 at that time. - 2. The concentrated load *P* is applied to this cylinder at the center in the longitudinal direction as shown in Figure 2. Assume no deflection at the supporting points. Here, Young's modulus is denoted as *E* and the Bernoulli-Euler theory is assumed. - (1) Obtain the distribution of bending moment in a cross section. - (2) Obtain the second moment of area. - (3) Obtain the maximum value of tensile stress in a cross section. - (4) Obtain the maximum value of deflection. Figure 1 Figure 2 ### [Problem 5] Maxwell's equations are given by the following equations: $$\nabla \cdot \mathbf{D} = \rho$$, $$\nabla \cdot \mathbf{B} = 0$$. $$\nabla \times E = -\frac{\partial B}{\partial t}$$, $$\nabla \times \boldsymbol{H} = \boldsymbol{i} + \frac{\partial \boldsymbol{D}}{\partial t},$$ where E is the electric field, D is the electric flux density, H is the magnetic field, B is the magnetic flux density, ρ is the charge density, and i is the current density. Answer the following questions about the electromagnetic wave propagating in a nonmagnetic, insulating, and isotropic medium ($\rho = 0$, i = 0, $D = \varepsilon_r \varepsilon_0 E$, $B = \mu_0 H$, where ε_0 and μ_0 are the electric permittivity and magnetic permeability of vacuum, respectively, and ε_r is the relative dielectric constant of the medium). 1. Derive the equation, $$\boldsymbol{\nabla} \cdot (\boldsymbol{E} \times \boldsymbol{H}) = -\frac{\partial}{\partial t} \left(\frac{\varepsilon_{r} \varepsilon_{0}}{2} |\boldsymbol{E}|^{2} + \frac{\mu_{0}}{2} |\boldsymbol{H}|^{2} \right),$$ using a vector identity, $\nabla \cdot (X \times Y) = Y \cdot (\nabla \times X) - X \cdot (\nabla \times Y)$. Describe the physical meaning of this equation in around 30 words. 2. Consider a plane wave propagating in the medium along the x axis, $$\boldsymbol{E}(\boldsymbol{r},t) = \begin{pmatrix} 0 \\ E_0 \\ 0 \end{pmatrix} \cos(kx - \omega t),$$ where E_0 is the amplitude of the electric field, k is the magnitude of the wave vector, and ω is the angular frequency. - (1) Give the magnetic field H(r, t), and find the relation between k and ω . - (2) Describe the Poynting vector $\mathbf{S} (= \mathbf{E} \times \mathbf{H})$. - (3) Electromagnetic wave intensity (power per unit area) I is given by the time average of the magnitude of the Poynting vector |S|. Give the intensity I using E_0 . - (4) Let us calculate the amplitude of the electric field in the core of an optical fiber. Light of 10 mW power is guided in the circular core with a diameter of 10 μ m and a relative dielectric constant $\varepsilon_r = 2.1$. Calculate E_0 by assuming that the light is completely confined and uniformly distributed inside the core. Use the following values, if necessary: $\varepsilon_0 = 8.9 \times 10^{-12} \text{ C} \cdot \text{V}^{-1} \cdot \text{m}^{-1}$, $\mu_0 = 1.3 \times 10^{-6} \text{ H} \cdot \text{m}^{-1}$. ### [Problem 6] Let us discuss electrical conduction in semiconductors from carrier transport. Answer the following questions. In the derivations of formulae, pay attention to the positive/negative signs. 1. Fundamental mechanisms of the carrier transport are the drift and diffusion. It is assumed that the carriers can be transported in only one-dimensional direction (x-axis). When there exists an electric field E in a semiconductor, electrons are accelerated by the field, while decelerated by phonon scattering for instance. Considering the electric field in the positive direction of x-axis, an equation of motion of electron is therefore given by Equation ①. $$m^* \frac{dv_x}{dt} = -eE - m^* \frac{v_x}{\tau} \tag{1}$$ m^* : effective mass of electron, e: elementary charge, τ : relaxation time of electron, v_x : velocity of electron - (1) Describe the drift velocity of electrons v_{drift} at the steady state condition using only physical constants and physical quantities included in Equation ①. - (2) Describe the drift current density i_{drift} using electron concentration n with referring the above question. When there exists a gradient of electron concentration dn/dx in a semiconductor, electrons are transported by diffusion. Describe the diffusion current density i_{diff} using the diffusion coefficient of electrons D_{e} . Based on these, describe the total current density i_{total} . - (3) The drift current density i_{drift} derived in the previous question can be expressed using electron mobility μ_{e} . Here, the Einstein relation given by Equation ② is known to hold between D_{e} in i_{diff} and μ_{e} in i_{drift} . Derive the Einstein relation using the law of equipartition of energy. $$D_{\rm e} = \left(\frac{kT}{e}\right)\mu_{\rm e}$$ 2 k: Boltzmann's constant, T: temperature Note that D_e can be expressed by Equation ③. $$D_{\rm e} = v_{\rm th} l \tag{3}$$ v_{th} : thermal velocity of electron, l: mean free path of electron Let us consider an ideal pn junction, in which acceptors and donors are distributed uniformly in p-region and n-region, respectively. Fill in the blanks of the following sentences. Consider the behavior of electrons and holes before and after forming a junction. Here, there is no transfer of carriers into and from the exterior. In the n-region before forming the junction, the quantity of electrons in conduction band and positively-charged donors are equal, securing the (a) condition. same condition is also secured in the p-region. After forming the junction, due to the difference in the carrier concentrations, electrons are transported from the conduction band in the n-region to that in the p-region, while holes are transported from the valence band in the p-region to that in the n-region by Accordingly, an electric double layer consisting of positively-charged donors and negatively-charged accepters is formed at the boundary. It allows the carriers to be transported by (c) toward the opposite direction to the (b) Eventually, these are balanced to reach the thermal equilibrium state when in the p- and n-regions become identical. This space with few carriers is called as the (e) , and the height of the potential barrier generated is called as the (f) When a bias voltage is applied to the pn junction, the current-voltage characteristics shown in Figure 1 is obtained. Consider the generation mechanism of the electric current when the reverse bias voltage is applied (V < 0). Here, since the potential barrier existing at the boundary becomes (g), the electric current caused by the transport of (h), such as electrons in the n-region and holes in the p-region, is negligibly small. Accordingly, the electric current caused by the transport of (i), such as electrons in the p-region and holes in the n-region, is dominant. Specifically, the (i) in the vicinity of the barrier edge go down the barrier to cause the concentration gradient in the respective regions, which allows the (i) to be transported by (b) toward the barrier, resulting in the electric current to flow. Here, as the (i) are generated by (j), their concentration is extremely low and thus the electric current is negligibly small when the reverse bias voltage is applied. Figure 1 ### [Problem 7] - 1. Answer the following questions on plastic deformations of metals with the face-centered cubic (FCC) structure, the body-centered cubic (BCC) structure, and the hexagonal close-packed (HCP) structure. - (1) In general, primary-slip plane and slip direction of a metallic crystal correspond to the closest-packed plane and closest-packed direction, respectively. Answer one of the closest-packed planes and one of the closest-packed directions for a metallic crystal with the BCC structure. For the answer, use the Miller indices. - (2) Ratio of the lattice constants in the c and a directions (*c/a*) for the primitive unit cell of a metallic crystal with the HCP structure is varied by the materials. Calculate *c/a* for the primitive unit cell with an ideal HCP structure composed of rigid spheres. Use three significant digits. - (3) Elemental metals with the HCP structure can be classified into two groups with different primary slip planes. Here, it is known that there is a correlation between the primary slip plane and the c/a value, and that the primary slip plane changes at c/a = 1.60 with a few exceptions. Answer the primary slip planes corresponding to the cases of c/a > 1.60 and c/a < 1.60, respectively, using the Miller indices. - (4) Consider the tensile deformation of polycrystalline material with the FCC, BCC, or HCP structure until the fracture. Which polycrystalline material generally shows the smallest elongation until the fracture? Answer it with the reason in around 15 words. - (5) It is known that the dislocation of the primary-slip system for the crystal with the FCC structure whose lattice constant is *a* dissociates as the following formula. Show that the self-energy of the dislocation is reduced by this dissociation reaction. $$\frac{a}{2}[110] \rightarrow \frac{a}{6}[211] + \frac{a}{6}[12\overline{1}]$$ - 2. A tensile test of a Cu single crystal, which has the FCC structure, in the single slip direction was performed at room temperature. The stress-strain relation shows a work-hardening curve after the elastic deformation. Answer the following questions. - (1) Three stages (I, II, and III) appear in the work-hardening curve. Draw the work-hardening curve with stress on the vertical axis and strain on the horizontal axis, schematically. Here, the difference of the slopes at the respective stages I, II, and III has to be depicted clearly in the figure. - (2) What kinds of phenomena take place at the respective stages I, II, and III? Describe them in around 20 words, respectively. - 3. In addition to the work-hardening, there are following two strengthening mechanisms related to the dislocation by adding foreign element. Explain respective strengthening mechanisms, particularly by using the words in the brackets, in around 40 words. - (1) Dispersion strengthening mechanism (Orowan loop) - (2) Solid solution strengthening mechanism (Cottrell atmosphere) ### [Problem 8] Chemical reactions have been used in syntheses of various chemicals and energy conversion processes. Let us discuss production of hydrogen gas and fuel cells using hydrogen gas. Note that g and l denote gas and liquid states, respectively, and all the gaseous species behave as perfect gas. Use the values for the gas constant, R = 8.314 J·K⁻¹·mol⁻¹, and Faraday constant, F = 96490 C·mol⁻¹. The standard state is the state at 298 K and 1 atm (= 1.013×10^5 Pa). One mole of methane gas CH₄(g) reacted with water vapor H₂O(g) to form carbon dioxide gas CO₂(g) and hydrogen gas H₂(g) in accordance with Reaction ①. Calculate the standard enthalpy Δ_rH^o₂₉₈ [kJ] and the standard internal energy Δ_rU^o₂₉₈ [kJ] for the reaction with three significant digits, using the thermochemical data given in Table 1. $$CH_4(g) + 2H_2O(g) \rightarrow CO_2(g) + 4H_2(g)$$ One mole of CH₄(g) was completely combusted using pure oxygen gas O₂(g) to form CO₂(g) and H₂O(g) in an adiabatic vessel under a constant total pressure of 1 atm. The temperature of CH₄(g) and O₂(g) before the combustion reaction was 298 K, and neither CH₄(g) nor O₂(g) remained after the reaction. Calculate the temperature of the products (adiabatic flame temperature). For the answer, show the combustion reaction formula first and then calculate the adiabatic flame temperature with three significant digits, using thermochemical data in Table 1. Assume that the standard molar heat capacities at constant pressure C^o_{p,m} [J·K⁻¹·mol⁻¹] of all the chemical species involved in the reaction are independent of temperature. Hydrogen gas generated by the steam reforming reaction of methane gas (Reaction ①) is to be separated from the reformed gas. For this purpose, a high temperature hydrogen separation membrane, operated at the reforming temperature around 873 K to promote the reforming reaction efficiently by separating hydrogen gas, is under development. Let us discuss about a Pd separation membrane, in which hydrogen is known to dissolve and diffuse in the form of hydrogen atom. 3. $H_2(g)$ dissolves as hydrogen atom in Pd through Reaction ② to form a dilute Pd-H alloy. Here, $\underline{H}(Pd)$ denotes dissolved hydrogen atom in Pd and its activity $a_{\underline{H}}$ is expressed by the mole fraction of hydrogen atom (the Henrian standard state). $$H_2(g) \rightarrow 2\underline{H}(Pd)$$ ② The alloy behaves as an ideal dilute solution. Find the relationship between the hydrogen gas activity $P_{\rm H_2}$ (= $p_{\rm H2}/P^{\rm o}$) and the equilibrium concentration of atomic hydrogen, $C_{\rm H}$ [mol·cm⁻³]. Here, $P^{\rm o}$ [atm] (= 1 atm) and $p_{\rm H2}$ [atm] are the standard pressure and the partial pressure of hydrogen gas, respectively. Assume that $K_{\rm H}$ denotes the equilibrium constant for Reaction ② and the molar volume of the alloy \overline{V} [cm³·mol⁻¹] is constant regardless of the hydrogen concentration. 4. When the values of $P_{\rm H_2}$ at both sides of the Pd membrane are different, flux across the Pd membrane (thickness: d [cm]) occurs. Draw the schematic concentration profile of hydrogen atom in the Pd membrane under the steady state condition, when the hydrogen atom diffusion across the Pd membrane is the rate-limiting process. Derive the equation for the hydrogen atom flux $J_{\rm H}$ [mol·cm⁻²·s⁻¹] across the Pd membrane. The equilibrium hydrogen concentrations at respective sides of the Pd membrane are $C'_{\rm H}$ [mol·cm⁻³] and $C''_{\rm H}$ [mol·cm⁻³], and assume the diffusion coefficient of atomic hydrogen in the Pd membrane $D_{\rm H}$ [cm²·s⁻¹] is constant regardless of the hydrogen concentration. Currently, the fuel cells using oxide-ceramic electrolytes or polymer electrolytes are commercialized for stationary applications. Here, let us discuss a polymer electrolyte fuel cell using H⁺-conducting electrolyte, composed of the following cell construction. Note that p_{O2} [atm] and $a_{H_2O(l)}$ denote the partial pressure of oxygen gas and the water activity with respect to pure water as the standard state, respectively. - 5. Show the half-cell reactions at the right-hand-side and the left-hand-side electrodes, and answer the overall cell reaction. - 6. Calculate both standard electromotive force E° [V] and open circuit voltage (equilibrium electromotive force) E [V] of the cell at 298 K with three significant digits, using thermochemical data in Table 1. Table 1 Thermochemical data (298 K, 1 atm). | Chemical | $\Delta_{ m f} H_{298}^{\circ}$ | $\Delta_{_{ m f}}G_{_{ m 298}}^{\circ}$ | $C_{p,m}^{\circ}$ | |---------------------|---------------------------------|-----------------------------------------|-----------------------------------| | species | $[kJ \cdot mol^{-1}]$ | [kJ·mol ⁻¹] | $[J \cdot K^{-1} \cdot mol^{-1}]$ | | CH ₄ (g) | -74.81 | -50.72 | 35.31 | | $CO_2(g)$ | -393.5 | -394.4 | 37.11 | | $H_2O(l)$ | -285.8 | -237.1 | - | | $H_2O(g)$ | -241.8 | -228.6 | 33.58 | | $H_2(g)$ | 0 | 0 | - | | $O_2(g)$ | 0 | 0 | 29.36 | $\Delta_{\rm f} H_{298}^{\circ}$: Standard enthalpy of formation $\Delta_{\mathrm{f}}G_{298}^{\circ}$: Standard Gibbs energy of formation $C_{p,m}^{\circ}$: Standard molar heat capacity at constant pressure (Calculation Sheet) (Calculation Sheet)