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Department of Materials Engineering

Graduate School of Engineering
The Unlversny of Tokyo

Entrance Examlnatlon for YR 2017

Fundamentals of Materials Engineering

1:00 pm ~ 4:00 pm
Tuesday, August 30, 2016

Examinee No.

- Attentions -
The examination duration is 180 minutes.

Select four problems out of eight problems set in the
booklets of Fundamentals of Materials Engineering with
five problems and Chemistry (Applicants for the
Department of Materials Engineering) with three problems.
If you answer more than four problems, all your answers
will become invalid.

You must use only one answering sheet for each problem.
Write down the problem number selected on each
answerlng sheet. You may use the reverse side of the
answering sheet, if necessary.

Answer in English or Japanese.

You may use blank spaces of the booklets as calculation
sheets.

Fill in your examinee number on the booklets.

The booklets must NOT be taken out after the exam.



[Prbblem 4]

By denoting the vertically downward gravity acceleration as g, answer the following

questions.

1. Consider a system where a weight of mass m is attached at one end of a rod of length
[, the other end of which is pivoted at a fixed point O, as shown in Fig. 1. The rod
is free to rotate in a vertical plahe around the point O, and the angle between the rod
and the vertical line is denoted as ¢  The mass and the thickness of the rod and the
size of the weight are assumed to be negligible.

(1) Derive the total kinetic energy 7 and the total potential energy ¥ of the system.
(2) Derive the equation of mbtion of the system.

(3) Derive the total energy and show that the law of energy conservation is satisfied.

2. Consider a system where a weight of mass m is suspended from a pulley of mass M
and radius @ by an unstretchable rope of negligible mass, as shown in Fig. 2. The
pulley can rotate freely around the fixed point O, Assume that tﬁe pulley is at a stop
at the initial state and the rotational angle ofthe pulley from the initial state is denoted
as ¢.

(1) Show the moment of inertia of the pulley around the fixed point O as well as the
| derivation. |
(2) Derive the total kinetic energy T and the total potential energy ¥ of the system.

(3) Derive the equation of motion of the system.

3. Suppose that a cantilever of length 1, the right end of which is supported on a roller

support, is subject to a uniformly distributed vertical load p, as shown in Fig. 3.



Young’s modulus £ and the geometrical moment of inertia / of the cantilever are

uniform, and the mass of the cantilever is assumed to be negligible.

(1) If there is no support at the right end, derive the displacement of the cantilever at
the right end.

(2) If there is a support at the right end, derive the reaction force provided by the

support,

Fig. 1 Fig. 2

A\
>

77

N
A4

Fig. 3



| [Problem 5]

1. Consider a three-dimensional free electron gas. Assume that wavefunctions of the
free electron gas satisfy periodic boundary conditions witﬁ a period of L fo‘r X, y, and
z directions. The wavefunction of the free electron gas that satisfies thé periodic
boundary condition is described as ¥, (r)=exp(ik-r). r=(x,y,z)is a position

vector and k=(kx,ky,k=) is a wavevector, ky, %, and k; take .a value of

0,+—,+—,.... Here, m denotes the mass of an electron, % =i (h: Planck's
L L , : 2

constant), and i is the imaginary unit.

(1) Prove that the wavefunction ¥, (r) satisfies the periodic boundary condition.

. 2
(2) Prove that the energy eignenvalue is givenas E, = gﬁ-—(kf +kD+k; )
i\

(3) Let us define N as the number of electronic states within a sphere centered at the
origin with a radius of ¥ in the k space. Express Nusingfand Z. Assume that
k»2Z

L
(4) Let us define E as the energy of the electronic state at the surface of the sphere

with a radius of & considered in Question (3). Express Nusing E, L, and m.

(5) Express the density of states per unit volume D using E and m.



Consider a one-dimensional electron moving under a periodic potential

V(x)=Y, cos(—zﬁx). The electron wave represented by exp(ikx). is Bragg-
a .

reflected at the edges of the Brillouin zone,‘ k :iz. As a result, two standing
a

waves, ¢, (x) and ¢_(x), are formed by superposing the two waves exp (if—x]
a

and exp[—izx . Here,p, (x) and ¢_(x)} are given by

(2ol
exp| i—x [+exp —i—x

0 (x)= T }xp(i%x}—exp[—i%x]:

which are normalized in the range of 0<x<¢.

-

(1) Obtain |p, (Jc)|2 and |go_ (x)|2.

(2) Obtain the difference between the energy expectation values of the two states

represented by the two standing waves ¢, (x) and ¢_(x).



[Problem 6]

Consider the motion of an ion in solid around its stable position. For simplicity, consider
only the motion in x direction, and set the stable position as the origin (x=0). The

potential that the ion feels, V(x), is given as
V(x)= lkx2
2 b

where k isa positive constant. Answer the following questions with denoting the ion

mass and charge as m and ¢, respectively. In your answers, you may use the

constants and functions given in the problem text.

I. When the ion motion is considered on the basis of quantum mechanics, the total energy

ofthe ion, E, is expressed as

E, =(n+l]hco, h= i,-n =0,12,...,
2 2

and the wavefunction i, (x) corresponding to each » is expressed as

’ma) mo
=CH|.== —al x|
v, (x)=C, n[ 7 x]exp( o5 )

H,(2)=1, H(2)=2z, H,(z)=4z"-2,....
Here, » and C, are the Planck’s constant and the constant introduced for the

normalization of the wavefunction, respectively. Also, @ is a positive constant.

1. Describe the reason why the values allowed as the total énergy are discrete in around
30 words.
2. (1) Write the time-independent Schrédinger equation in this case.
(2) Consider thg case of n=0, and express @ using other given constants. Write

also the derivation process.



3. Suppose that the ion is in the state of # =0,
(1) Let us denote the probability to find the ion in x~x+dx as P(x)dx. Then

obtain P(x).
(2) Obtain P(x) at x:J&k“’_ for a classical-mechanical particle having the

same energy. Describe also how you reach the answer.
(3) On the basis of above Questions (1) and (2), describe how the range of the ion
motion is different between classical mechanics and quantum mechanics in

around 30 words.

II. Let us examine how the ion motion changes when a uniform electric field in x

direction, ¥, is applied.

1. Write the time-independent Schrédinger equation in this case. Note that the
potential that the ion feels due to the unifdrm electric field can be expressed as — gFx.

2. Obtain the change of the stable ion position from the case without the electric field.

3. Obtain the values allowed as the total energy of the ion and the wavefunction

corresponding to each value.



[Problem 7]

Answer the following questions regarding the Al-Cu binary phase diagram at 1 atm

(Fig. 1). .

Ligquid phase, L

Temperature [°C)

10 20 30 40 50
Cu concentration [mass%)

Fig. 1

1. Answer the name of the reaction involving the point X. Also, explain briefly the
thermodynamic conditions at the point X based on the Gibbs’ phase rule in around 60

words.

2. Consider a continuous-cooling process of the alloy with composition A from the
liquid phase.

(1) Explain the undercooling phenomenon in around 30 words.

(2) Assume that phase formation during the cooling proceeds by homogeneous
nucleation and growth. On the basis of the classical nucleation theory, derive
the critical nucleus radius », by assuming that the nucleus is spherical. The
Gibbs energy change of the new phase formation per unit volume is given as
AG, (< 0), and the interface energy between the new phase and the mother phase

is denoted as y.



3

3) Draw schematically the microstructures of alloy at the temperatures T2, T3 and

T4, when the liquid phase at the temperature T1 is cooled with maintaining the

equilibrium conditions of the system.

Consider a microstructure control of the alloy with the supersaturated o solid solution

as a starting material, which bas been obtained by quenching the alloy with

composition B after holding it at the temperature TS5 for a sufficient time.

(1) The supersaturated o solid solution contains excess vacancies in addition to the

equilibrium thermal vacancies at room temperature. Answer the following

questions.

a)

b)

Derive the equilibrium thermal vacancy concentration of pure metals at
temperature 7. For derivations, consider the Gibbs energy change for the
case that » vacanclies, whose formation enthalpy per each is Ae, , are
formed in the metal crystal containing ¥ atomic sites (N > n). Assume
that vacancies are randomly formed within the metal crystal, and entropy S
is given as ksIn# (ks: Boltzmann constant, W a total number of microscopic
states in the system). Show the calculation procedures, ~ Use
approximation In X1 ~XIn X - X (X > 1), if necessary.

Suppose that, in the supersaturated o solid solution, all tht;, equilibrium
thermal vacancies at the temperature T5 are quenched into room temperature
(25°C).  Derive the ratio between the equilibrium thermal vacancy
concentration at room temperature and the vacancy concentration of the
supersaturated o solid solution. Assume that the dilute alloy with
composition B can be treated as pure metal and use the following values for
calculations; Ae\‘, = 1.0 eV for pure Al, T5 = 530°C, and ks-= 8.62 x 10°

eV-K".



(2) When the supersaturated o solid solution is annealed in the (@+6) two-phase
region, precipitations of the thermodynamically metastable 8 phase proceed,
and the strength of the present Al alloy is maximized by having the
microstructure composed of the finely and densely dispersed §° phase, In order
to obtain such microstructure with the 6’ phase distributions, describe the
optimum annealing temperature from the viewpoint of the nucleation-frequency

and the growth-rate of the precipitates in around 120 words,
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[Problem 8]

Let us consider the oxidation reaction D of a metal M. When Equation @ is
given for a change in the molar specific heat at a constant pressure involved in the
reaction @ AC, [I'mol!-K!], calculate the standard Gibbs energy AG® of this
reaction at 7 [K] above 298 K. Also, show the calculation process. The
substances involved in this reaction do not show phase transformation beﬁzveen
298 Kand 7. Here, a and b are constants. Use AH 29s and AS®203 for the standard
enthalpy and the standard entropy of reaction at 298 K, respectively. Descriptions
in parentheses s and g show the standard states, namely pure solid and pure gas

(1 atm), respectively.

M(s) + 1/2 Oa(g) = MO(s). | ®
AC,=a+bT. @

In an Ellingham diagram which shows the relationship between the oxygen potentials
(the relative chemical potentials of oxygen) for metal (or metal-oxide) —metal-oxide
| equilibrium and the temperature, almost all equilibrium lines show the similar slopes.

Explain the reason in around 60 words.

. Assume that the standard enthalpies AH°, and the standard entropies AS°T of
reactions rélating to Fe,O (“rﬁstite) and Fe304 (magﬁetite) are .independent of -
temperature and obtained as in Table 1 at the eutectoid temperature of Fe.O and
higher. Here, Fe,O is a non-stoichiometric compound. Answer the following
questions. Note that the gas constant R = 8.314 J-mol~"-K-!, and that the standard

state for gasses is at 1 atm (1.013 x 10° Pa).

11



Table 1 Standard enthalpies and standard entropies of reactions.

AHC® [T-mol™] | AS°,[J-mol™.K™]

2xFe+0, =2Fe O (k1) —-522200 -124.7

cFe,0+0, = dFe,0, (3%2) —~609400 —229.4

x1

X2

W

2

3)

The non-stoichiometric compound Fe;O is considered to be at the composition
when equilibrated with Fe. (x = 0.95)
¢ and d are constants. The non-stoichiometric compound Fe,O is considered to

be at the composition when equilibrated with Fe3 Q4. (0.83<x<0.95)

Draw the relationships between the standard Gibbs energy and the temperature
for redox reactions among Fe, Fe,0, and Fe304 at temperatures from 800 K to
1000 K. In addition, indicate stability regions for each phase in the graph.
Note that the region lower than eutectoid temperature can be drawn qualitatively.
Calculate the equilibrium oxygen partial pressure [Pa] at the eutectoid point, with
two significant digits.  Also, show the calculation process.

In Table 1, we assume that standard enthalpies and. standard entropies of

reactions are independent of temperature. In reality, however, they depend on

temperature. Explain one of the reasons for the dependency in around 30 words.
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